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Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data 

requires specifying the location of the data on the processor and 
the processor itself. 
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Data locality is 
explicit but data 
access is complicated. 
Distributed computing 
is typically 
implemented with 
message passing 
(e.g. MPI)



Distributed Data vs Shared Memory 
(Cont).

Shared Memory:
Data is an a globally accessible address space, any processor can 

access data by specifying its location using a global index

Data is mapped out in 
a natural manner 
(usually 
corresponding to the 
original problem) and 
access is easy. 
Information on data 
locality is obscured 
and leads to loss of 
performance.
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Global Arrays

single, shared data structure/ 
global indexing

e.g., access A(4,3) rather than 
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a 
shared memory-like style

Global Address Space



Global Arrays (cont.)

� Shared memory model in context of 
distributed dense arrays

� Much simpler than message-passing for 
many applications

� Complete environment for parallel code 
development

� Compatible with MPI
� Data locality control similar to distributed 

memory/message passing model
� Extensible
� Scalable



Remote Data Access in GA
Message Passing:

identify size and location of data 
blocks

loop over processors:
if (me = P_N) then

pack data in local message 
buffer
send block of data to 
message buffer on P0

else if (me = P0) then
receive block of data from 
P_N in message buffer
unpack data from message 
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, ld);

Global Array 
handle

}

Global upper 
and lower 
indices of data 
patch

Local buffer 
and array of 
strides

P0

P1

P2

P3



Data Locality

What data does a processor own?

NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

NGA_Access(g_a, lo, hi, ptr, ld)

Use this information to organize calculation so that 
maximum use is made of locally held data



Global Array Model of Computations
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Shared Object
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Example: Matrix Multiply

local buffers on the 
processor

global arrays 
representing 
matrices

•

•

=

=

nga_getnga_put

dgemm



Matrix Multiply 
(a better version)

local buffers on the 
processor

more scalable!
(less memory, 
higher parallelism)•

•

=

=

getatomic accumulate

dgemm



Example: 1-D Transpose



Example: 1-D Transpose (cont.)

#define NDIM 1
#define TOTALELEMS 197
#define MAXPROC 128

program main
implicit none

#include "mafdecls.fh"
#include "global.fh"

integer dims(3), chunk(3), nprocs, me, i, lo(3), hi(3), lo1(3)
integer hi1(3), lo2(3), hi2(3), ld(3), nelem
integer g_a, g_b, a(MAXPROC*TOTALELEMS), b(MAXPROC*TOTALELEMS)
integer heap, stack, ichk, ierr
logical status
heap = 300000
stack = 300000



Example: 1-D Transpose (cont.)
c initialize communication library

call mpi_init(ierr)
c initialize ga library

call ga_initialize()
me = ga_nodeid()
nprocs = ga_nnodes()
dims(1) = nprocs*TOTALELEMS + nprocs/2 ! Unequal data distribution
ld(1) = MAXPROC*TOTALELEMS
chunk(1) = TOTALELEMS ! Minimum amount of data on each processor
status = ma_init(MT_F_DBL, stack/nprocs, heap/nprocs)

c create a global array
status = nga_create(MT_F_INT, NDIM, dims, "array A", chunk, g_a)
status = ga_duplicate(g_a, g_b, "array B")

c initialize data in GA
do i=1, dims(1)

a(i) = i
end do
lo1(1) = 1
hi1(1) = dims(1)
if (me.eq.0) call nga_put(g_a,lo1,hi1,a,ld)
call ga_sync() ! Make sure data is distributed before continuing



Example: 1-D Transpose (cont.)

c invert data locally
call nga_distribution(g_a, me, lo, hi)
call nga_get(g_a, lo, hi, a, ld) ! Use locality
nelem = hi(1)-lo(1)+1
do i = 1, nelem
b(i) = a(nelem - i + 1)

end do

c invert data globally
lo2(1) = dims(1) - hi(1) + 1
hi2(1) = dims(1) - lo(1) + 1
call nga_put(g_b,lo2,hi2,b,ld)
call ga_sync() ! Make sure inversion is complete



Example: 1-D Transpose (cont.)

c check inversion
call nga_get(g_a,lo1,hi1,a,ld)
call nga_get(g_b,lo1,hi1,b,ld)
ichk = 0
do i= 1, dims(1)
if (a(i).ne.b(dims(1)-i+1).and.me.eq.0) then
write(6,*) "Mismatch at ",i
ichk = ichk + 1

endif
end do
if (ichk.eq.0.and.me.eq.0) write(6,*) "Transpose OK"

status = ga_destroy(g_a) ! Deallocate memory for arrays
status = ga_destroy(g_b)
call ga_terminate()
call mpi_finalize(ierr)
stop
end



One-sided Communication 

message passing
MPI

P1P0
receive send

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation  
on both sides. The processor 
sending the message (P1) and 
the processor receiving the 
message (P0) must both 
participate.

One-sided Communication:
Once message is initiated on 
sending processor (P1) the 
sending processor can 
continue computation. 
Receiving processor (P0) is 
not involved.



Non-Blocking Communication

� New functionality in GA version 3.3
� Allows overlapping of data transfers and computations

� Technique for latency hiding 

� Nonblocking operations initiate a communication call and then 
return control to the application immediately

� operation completed locally by making a call to the wait routine 



SUMMA Matrix Multiplication

A B C=A.B

Computation 

Comm.
(Overlap)

Issue NB Get A and B blocks
dodo (until last chunk)

issue NB Get to the next blocks
wait for previous issued call
compute A*B (sequential dgemm)
NB atomic accumulate into “C”      

matrix
donedone

Advantages:Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication

- latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancingpatch matrix multiplication

=



SUMMA Matrix Multiplication:
Improvement over MPI

Non-Blocking Communication Performance

Matrix Size 1024
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*2.4Ghz P4 Linux cluster,  Myrinet-GM interconnect (at SUNY, Buffalo)



Structure of GA

Message Passing
Global operations

ARMCI
portable 1-sided
communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Global Arrays 
and MPI are 
completely 
interoperable. 
Code can 
contain calls 
to both 
libraries.

Fortran 77 C C++ Babel

F90

Python

JavaApplication 
programming 
language interface



Core Capabilities

� Distributed array library
� dense arrays 1-7 dimensions
� four data types: integer, real, double precision, double complex
� global rather than per-task view of data structures 
� user control over data distribution: regular and irregular

� Collective and shared-memory style operations
� ga_sync, ga_scale, etc
� ga_put, ga_get, ga_acc
� nonblocking ga_put, ga_get, ga_acc

� Interfaces to third party parallel numerical libraries
� PeIGS, Scalapack, SUMMA, Tao

⌧ example: to solve a linear system using LU factorization
call ga_lu_solve(g_a, g_b)

instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)



Interoperability and Interfaces

� Language interfaces to Fortran, C, C++, Python
� Interoperability with MPI and MPI libararies

� e.g., PETSC, CUMULVS

� Explicit interfaces to other systems that expand 
functionality of GA
�ScaLAPACK-scalable linear algebra software
�Peigs-parallel eigensolvers
�TAO-advanced optimization package



Global Array Processor Groups

Many parallel applications require the execution of a large 
number of independent tasks. Examples include

• Numerical evaluation of gradients

• Monte Carlo sampling over initial conditions or uncertain 
parameter sets

• Free energy perturbation calculations (chemistry)

• Nudged elastic band calculations (chemistry and materials 
science)

• Sparse matrix-vector operations (NAS CG benchmark)



Global Array Processor Groups

If the individual calculations are small enough then each 
processor can be used to execute one of the tasks 
(embarrassingly parallel algorithms).

If the individual tasks are large enough that they must be 
distributed amongst several processors then the only option 
(usually) is to run each task sequentially on multiple processors. 
This usually limits the total number of processors that can be 
applied to the problem since parallel efficiency degrades as the
number of processors increases.
Sp
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Global Array Processor Groups

Alternatively the collection of processors can be decomposed 
into processor groups. These processor groups can be used to 
execute parallel algorithms independently of one another. This 
requires

• global operations that are restricted in scope to a particular 
group instead of over the entire domain of processors (world 
group)

• distributed data structures that are restricted to a particular
group



Processor Groups (Schematic)

World Group

Group A Group B



Creating Processor Groups

integer function ga_pgroup_create(list, count)

Returns a handle to a group of processors. The total number
of processors is count, the individual processor IDs are located
in the array list.

subroutine ga_pgroup_set_default(p_grp)

Set the default processor to p_grp. All arrays created after this
point are created on the default processor group, all global
operations are restricted to the default processor group unless
explicit directives are used. Initial value of the default processor
group is the world group.



Explicit Operations on Groups
Explicit Global Operations on Groups

ga_pgroup_sync(p_grp)
ga_pgroup_brdcst(p_grp,type,buf,lenbuf,root)
ga_pgroup_igop(p_grp,type,buf,lenbuf,op)
ga_pgroup_dgop(p_grp,type,buf,lenbuf,op)

Query Operations on Groups

ga_pgroup_nnodes(p_grp)
ga_pgroup_nodeid(p_grp)

Access Functions

integer function ga_pgroup_get_default()
integer function ga_pgroup_get_world()



Programming with Groups

� Most explicit group operations in GA reflect operations 
available for MPI groups

� Concept of default group is not available in MPI

� Higher level abstractions not available in MPI



Communication between Groups

Copy and copy_patch operations are supported for global arrays that 
are created on different groups. One of the groups must be 
completely contained in the other (nested).

The copy or copy_patch operation must be executed by all processors 
on the nested group (group B in illustration)

Group A

Group B



Using Processor Groups

c set up groups
me = ga_nodeid()
nprocs = ga_nnodes()
grpsize = 4
ngrps = nprocs/grpsize
nproc = grpsize
do i = 1, ngrps ! All processors participate in
do j = 1, grpsize ! creation of group
proclist(j) = grpsize*(i-1) + (j-1)

end do
procgroup(i) = ga_pgroup_create(proclist,nproc)

end do
my_pgrp = (me - mod(me,grpsize))/grpsize + 1

c run task on groups
call ga_pgroup_set_default(procgroup(my_pgrp))
call do_parallel_task
call ga_pgroup_set_default(ga_pgroup_get_world())



MD Example

P0 P1 P2 P3

P4 P5 P6 P7

Spatial Decomposition Algorithm:

• Partition particles among processors

• Update coordinates at every step

• Update partitioning after fixed
number of steps



MD Parallel Scaling
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MD Performance on Groups
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Application Areas

thermal flow simulation
Visualization and 
image analysis 

electronic structure chemistry 
GA is the standard programming model

glass flow 
simulation

material sciences molecular dynamics
Others: financial security forecasting, astrophysics, geosciences, atmospheric chemistry

biologybioinformatics



normal global array
global array with ghost cells

Ghost Cells

Operations:

NGA_Create_ghosts      - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells



Ghost Cell Update

Automatically update ghost 
cells with appropriate data 
from neighboring 
processors. A multiprotocol
implementation has been 
used to optimize the 
update operation to match 
platform characteristics.



Lattice Boltzmann Simulation
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Ghost Cell Application
Performance
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Mirrored Arrays

� Create Global Arrays that are replicated between SMP 
nodes but distributed within SMP nodes

� Aimed at fast nodes connected by relatively slow 
networks (e.g. Beowulf clusters)

� Use memory to hide latency
� Most of the operations supported on ordinary Global 

Arrays are also supported for mirrored arrays
� Global Array toolkit augmented by a merge operation 

that adds all copies of mirrored arrays together
� Easy conversion between mirrored and distributed 

arrays



Mirrored Arrays (cont.)

Distributed Mirrored Replicated



NWChem DFT Calculation

http://www.emsl.pnl.gov/docs/nwchem



Other Functionality

� Common Component Architecture
� Disk Resident Arrays

� Provide an interface between GA and distributed files on disk

� Sparse data manipulation



Related Programming Tools

� Co-Array Fortran
�Distributed Arrays
�One-Sided Communication
�No Global View of Data

� UPC
�Model Similar to GA but only applicable to C programs
�Global Shared Pointers could be used to implement GA 

functionality
⌧C does not really support multi-dimensional arrays

� High level functionality in GA is missing from these 
systems



Summary

� The idea has proven very successful
�efficient on a wide range of architectures

⌧core operations tuned for high performance

�library substantially extended but all original (1994) APIs 
preserved

�increasing number of application areas

� Supported and portable tool that works in real 
applications

� Future work
�Fault tolerance



Source Code and More
Information

� Version 3.3 available
� Version 3.4 (with groups) available in beta
� Homepage at http://www.emsl.pnl.gov/docs/global/
� Platforms (32 and 64 bit)

�IBM SP
�Cray X1, XD1
�Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
�Solaris
�Fujitsu
�Hitachi
�NEC
�HP
�Windows



Disk Resident Arrays
� Extend GA model to disk

�system similar to Panda (U. Illinois) but higher level 
APIs

� Provide easy transfer of data between N-dim 
arrays stored on disk and  distributed arrays 
stored in memory

� Use when
�Arrays too big to store in core
�checkpoint/restart
�out-of-core solvers

global array

disk resident array



High Bandwidth Read/Write

Disk Resident Array

Disks

Disk Resident Arrays 
automatically 
decomposed into 
multiple files



Scalable Performance of DRA

file systems
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Useful GA Functions (Fortran)

subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
integer type (MT_F_INT, MT_F_DBL, etc.)
integer dim
integer dims(dim)
character*(*) name
integer chunk(dim)
integer g_a

logical function ga_duplicate(g_a,g_b,name)
integer g_a
integer g_b
character*(*) name

logical function ga_destroy(g_a)
integer g_a

subroutine ga_sync()



Use GA Functions (Fortran)

subroutine nga_distribution(g_a, node_id, lo, hi)
integer g_a
integer node_id
integer lo(dim)
integer hi(dim)

subroutine nga_put(g_a, lo, hi, buf, ld)
integer g_a
integer lo(dim)
integer hi(dim)
fortran array buf
integer ld(dim-1)

subroutine nga_get(g_a, lo, hi, buf, ld)
integer g_a
integer lo(dim)
integer hi(dim)
fortran array buf
integer ld(dim-1)



Useful GA Functions (C)

void GA_Initialize()
void GA_Terminate()

int GA_Nnodes()
int GA_Nodeid()

int NGA_Create(type,dim,dims,name,chunk)
int type (C_INT, C_DBL, etc.)
int dim
int dims[dim]
char* name
int chunk[dim]
Returns GA handle g_a

int GA_Duplicate(g_a,name)
int g_a
Returns GA handle g_b
char* name

void GA_Destroy(g_a)
int g_a

void GA_Sync()



Useful GA Functions (C)

void NGA_Distribution(g_a, node_id, lo, hi)
int g_a
int node_id
int lo[dim]
int hi[dim]

void NGA_Put(g_a, lo, hi, buf, ld)
int g_a
int lo[dim]
int hi[dim]
void* buf
int ld[dim-1]

void NGA_Get(g_a, lo, hi, buf, ld)
int g_a
int lo[dim]
int hi[dim]
void* buf
int ld[dim-1]


